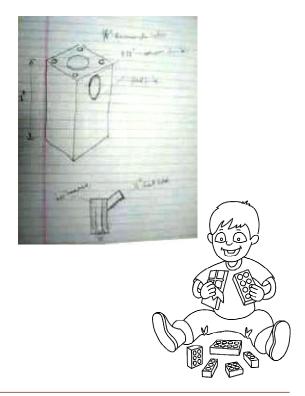


Усенков Дмитрий Юрьевич

ШОКОЛАДНЫЙ 3D-ПРИНТЕР ИЗ КОНСТРУКТОРА ЛЕГО?

Среди существующих 3D-принтеров есть и такие, которые печатают шоколадом. Вообще говоря, работать с таким материалом для печати проще, чем с пластмассой: шоколад легче расплавить. Но в остальном такие 3D-принтеры остаются довольно сложным устройством и потому стоят очень дорого.


А хотели бы вы сами сделать такой 3D-принтер?

Это вполне возможно: пользователь с ником saul описывает на сайте http://www.instructables.com с различными инструкциями и рекомендациями для «самодельщиков» как собрать такой принтер из конструктора ЛЕГО. Правда, эта инструкция дана на английском языке. Для российских читателей ниже дан перевод руководства по сборке шоколадного 3D-принтера на русский язык с исходными иллюстрациями с сайта http://www.instructables.com.

Итак, предоставим слово автору вышеуказанной публикации.

Используя конструктор ЛЕГО и изготовив несколько дополнительных деталей (прежде всего экструдер), можно собрать 3D-принтер для шоколада. Этот проект был сделан уже давно, поэтому документация несколько неполная, но можно надеяться, что читатели сами смогут заполнить пробелы.

Шаг 1. Проектирование экструдера шоколада («печатающего узла»)

Шаг 2. Изготовление рабочей камеры экструдера шоколада

Используется ленточная пила. Из алюминия вырезается заготовка размерами $1"\times1"\times3"$ (то есть примерно $2,5\times2,5\times7,6$ см).

Шаг 3. Сверление скважины для червячного винта

Сверление под углом отверстия для вставки воронки для засыпки шоколада.

Шаг 4. Картриджные нагреватели

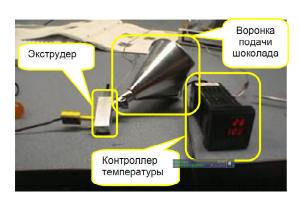
Используются 4 нагревателя мощностью по 5 Вт каждый для подвода тепла, чтобы растопить шоколад. Возможно, есть и более дешевые решения, но данные нагреватели удобны и очень хорошо размещаются в отверстиях диаметром 1/8 дюйма. Эти нагреватели были куплены в магазине Watlow (см. ht_cart.cfm).

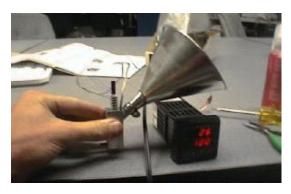
Шаг 5. Сменные сопла и установочный винт

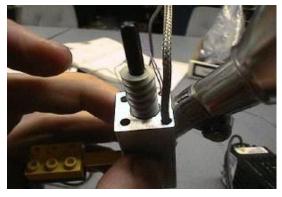
Лучше всего сделать сменное сопло и предусмотреть установочный винт в конце экструдера шоколада. Благодаря этому будет легче менять диаметр шоколадных капель при экструзии, а также облегчается чистка камеры экструдера при необходимости (например, если шоколад застынет в нем).

Сопло изготовлено из алюминиевого стержня диаметром 1/2 дюйма. Центральное отверстие можно делать разного диаметра в зависимости от желаемого размера шоколадных капель. Края стержня нужно сточить, заострив сопло.

плекта ЛЕГО.

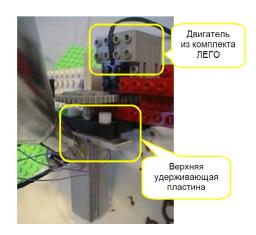

Шаг 6. Сверление гнезд для нагревателей




На фото показано, как разместить нагреватели в углах экструдера вокруг экструзионной камеры. Требуется подходящее сверло, чтобы высверлить гнезда диаметром 1/8 дюйма с достаточной глубиной.

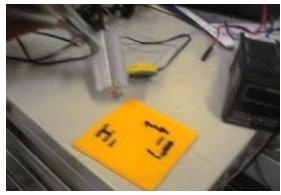
Здесь три отверстия предназначены для нагревателей, а четвертое (внизу справа) – для термодатчика (термопары). В середине – отверстие экструзионной камеры, куда вставляется червячный винт.

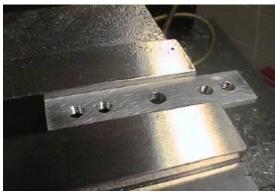
Шаг 7. Сборка экструдера



Теоретически в комплекте ЛЕГО имеются термометр и программируемый блок, чего должно быть достаточно, чтобы реализовать контроль за температурой шоколада. Однако можно использовать PID¹ и термопары.

Шаг 8. Тестирование экструдера

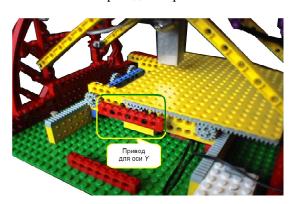



Верхний двигатель через шестеренную передачу вращает червячный винт экструдера.

Верхняя удерживающая пластина необходима, чтобы шоколад не сочился обратно из экструдера под давлением, которое в нем создает червячный

винт. Эта пластина также облегчает крепление экструдера к деталям ЛЕГО.

 $^{^{-1}}$ По всей видимости, автор данной публикации имел в виду пропорционально-интегрально-дифференциальный регулятор. – *Прим. ред*.


На фотографиях показано, как можно проверить работу экструдера. Соответствующие видеозаписи, сделанные автором публикации, доступны в Интернете по адресам http://www.instructables.com/file/

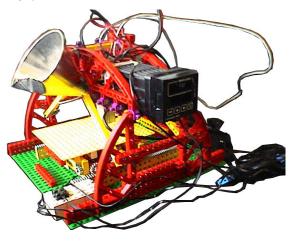
<u>FHIIJ15TLTEP27QSFU</u> и http://www.instructables.com/file/

FYVV206KPDEP27QSGB.

Шаг 9. Сборка каркаса принтера из ЛЕГО

Это довольно просто. Используются стойки и шестерни для кареток осей X и Y.

Если также хочется реализовать движение по оси Z, то есть много способов сде-


лать это. Например, можно использовать храповой механизм, чтобы вручную шаг за шагом увеличивать расстояние от экструдера до рабочей площадки для печати слой за слоем. С учетом ограничения объема памяти программируемого блока РСХ лучше программировать каждый слой в отдельности, подгружая новый программный код для следующего слоя после перехода к нему.

Шаг 10. Готово! Можно печатать шо-коладом!

Прототип шоколадного 3D-принтера готов!

Поскольку в программируемом блоке RCX есть только три управляемых порта, мы использовали один из них для оси X, один – для Y и один – для контроля экструзии. Если требуется автоматизировать перемещение по оси Z или обеспечить контроль температуры нагрева шоколада, то надо использовать два программируемых блока RCX.

При помощи такого 3D-принтера мне удавалось печатать пятислойные 3D-объекты, такие как буква ${\bf A}^1$.

К сожалению, без постоянной автоматической подачи нового исходного материала в экструдер и с такими простыми средствами перемещения «печатающей головки» возможности принтера ограничены, но и это, согласимся, весьма неплохо!

Может быть, кому-нибудь удастся упростить и/или улучшить конструкцию.

Источник: http://www.instructables.com/id/3D-chocolate-printer-made-from-LEGO

Усенков Дмитрий Юрьевич, старший научный сотрудник Института информатизации образования РАО, главный редактор журнала «Мир 3D/3D World».

Наши авторы, 2014. Our <u>authors</u>, 2014.

¹ Работу принтера и получаемый результат можно посмотреть на видео, доступном по адресам http://www.instructables.com/file/FIJARPAN6REP27QSL4 и http://www.instructables.com/file/F7QO7CDP74EP27QSLL.